Diferència entre revisions de la pàgina «ASIX-M3-UF2-A3.1-Exercicis recursivitat»

De wikiserver
Dreceres ràpides: navegació, cerca
(Recursivitat codi)
Línia 92: Línia 92:
 
       num=num-1
 
       num=num-1
 
       p5(num)
 
       p5(num)
   System.out.print(num,” “)
+
   print(num, end=" ")
 
</source>
 
</source>
  

Revisió del 17:42, 23 març 2021

Recursivitat seguiment codi

Indicar quina serà la sortida dels procediments següents:

1a)

def p1(num):
   if (num>0):
      print(num,” “)
      p1(num-1)
   else:
      print(“final”)

1b)

def p1(num):
   if (num>0):
     print(num,” “)
     p1(num-1)
   else:
     print(“final”)
   print(num,” “)
   print(”final de veritat “)

Quina seria la sortida si executéssim p1(6)?


2a)

def p2(num1 , num2):
   if (num1%num2!=0):
      print(num1,” “)
      p2(num1+1,num2)
   else:
      print(“final”)

2b)

def p2(num1 , num2):
   if (num1%num2!=0):
      print(num1,” “)
      p2(num1+1,num2)
   print(“final”)

Quina seria la sortida si executéssim p2(10,8)?

3)

def p3(num1, num2):
   if (num1 > 0):
      p3(num1-1,num2+num1)
   else:
      print(num2,” “)

Quina seria la sortida si executéssim p3(5,3)?

Quina seria la sortida si eliminéssim el else ( fent sempre el print ) i des del programa principal féssim:

for i in range(1,6):
   print (“p3 (“, i+”):”)
   p3 (i,0)

4a)

def p4(num):
   if (num> 0):
      p4(num-1)
      print(num,” “)
   else:
      print(”fi? “)

4b)

def p4(num):
   if (num> 0):
      p4(num-1)
      print(num,” “)
   print(”fi? “)

Quina seria la sortida si executéssim p4(5)?

5)

def p5(num):
   if (num>0):
      print(num,” “)
      num=num-1
      p5(num)
   print(num, end=" ")

Quina seria la sortida si executéssim p5(5)?

6)

def p6(num):
   print(num+” “)
   for i in range(num, 0, -1):
      p6(i-1)

Quina seria la sortida si executéssim p6(4)?

7)

def f1(num):
   if (num>0):
      f= f1(num-1) + 1
   else:
      f=0
   return f

Que retornaria f1(10)?

8)

def f2(num):
   if (num>0):
      f= f2(num-1) + num
   else:
      f=0
   return f

Que retornaria f2(10)?

9)

def f3(num):
   if (num>0):
      r=num
      for i in range(num-1, 0, -1):
         r= r + f3(i)
      f=r
   else:
      f=num
   return f

Què retorna f3(6)?

Trobar el cas general (què fa la funció) i escriure-la d’una altra forma més senzilla

10)

def f4(x):
   if (x> 100):
      f=x-10
   else:
      f= f4(f4(x+11))
   return f
}

Què retorna f4(100), i f4(0)? Fer el programa més senzill.

Recursivitat codi

0. Fes un meńu per escollir l'exercici a executar: el menú es trobarà en un fitxer diferent dels exercicis i aquests s'ubicaran en el mateix mòdul.

1. Escriure una funció recursiva que donat un número N (N ≥ 0) passat com a paràmetre calculi la suma de tots els números enters fins a N inclòs.

2. Escriure una funció recursiva que calculi el resultat de X elevat a N amb N >0, sabent que X0 = 1.

3. Escriu una funció recursiva per calcular la suma digital d’un número natural. Per exemple, la suma digital de 18624 és: 4 + 2 + 6 + 8 + 1 = 21

4. Dissenyeu un algoritme recursiu que calculi el màxim comú divisor de dos enters positius, sabent que :

     MCD( X, Y) = MCD (X-Y, Y) SI X > Y
     MCD (X, Y-X) SI Y > X
     X SI X = Y

5. Fes la funció recursiva SumaHarmonica (n) que retorna la suma:

     1 + 1/2 +1/3 + ... + 1/n

6. Fes una funció recursiva booleana que donats un número i un dígit retorni si aquest dígit pertany al número. Per exemple:

  existeix(1234,3) → true
  existeix(1234,7) → false 

7. Fes una funció que calculi el producte segons el mètode rus que diu que:

     x*y = ((2*x) *(y/2)) SI y es parell
     x*y =((2*x) *(y/2))+ x SI y és senar.

     Quan y val 1, el resultat és x.

8. Torres de Hanoi (amb N introduïda per l’usuari com a paràmetre). S’ha d’anar visualitzant la solució per pantalla.

9. Fes una funció recursiva que ompli un tauler n-goro. Un tauler n-goro és una matriu de n files i n+1 columnes que s'omple consecutivament en diagonal i quan ens sortim per una banda entrem per l'altra. L'últim element que s'omple serà l'extrem inferior dret.

     Per exemple amb n=3

       1 10 7 4
       5 2 11 8
       9 6 3 12

     Amb n = 4

       1 17 13 9 5
       6 2 18 14 10
       11 7 3 19 15
       16 12 8 4 20